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Abstract. We present a consistent second order perturbation theory for the lowest-lying condensed modes
of very small, weakly-interacting Bose-Einstein condensates in terms of bare particle eigenstates in a
harmonic trap. After presenting our general approach, we focus on explicit expressions for a simple three-
level system, mainly in order to discuss the analogy of a single condensate occupying two modes of a trap
with the semi-classical theory for two-mode photon lasers. A subsequent renormalization of the single-
particle energies to include the dressing imposed by mean fields demonstrates clearly the consistency of
our treatment with other kinetic approaches.

PACS. 03.75.Fi Phase coherent atomic ensembles; quantum condensation phenomena –
03.75.-b Matter waves – 42.55.Ah General laser theory – 42.50.-p Quantum optics

1 Introduction

The kinetic theories of Bose-Einstein condensation in a
trap can be divided into two general categories. The fully
quantum approaches have been based either on a per-
turbative master equation treatment for the many-body
density matrix [1], or on a single Fokker-Planck equation
for the nonequilibrium dynamics of the entire system [2].
Alternative approaches to the nonequilibrium dynamics
of trapped Bose-condensed gases are essentially of a per-
turbative nature, based on a suitably truncated coupled
equation of motion hierarchy for normal and anomalous
averages [3–9]. The growth of condensation was first stud-
ied numerically by Gardiner and co-workers [10,11], based
on the theory developed in [1], and their findings were
in qualitative agreement with the description of Kagan,
Svistunov and Shlyapnikov [12]. Independent studies by
Stoof and co-workers, based on similar approximations,
have produced growth curves [13] which are in very good
agreement with those of Gardiner et al. [11].

The large condensates typically produced in experi-
ments lead to large mean field potentials which signifi-
cantly dress the single-particle eigenenergies of the trap
potential, thus making it convenient to work in a suit-
ably dressed basis. The conventional theoretical picture
adopted is thus that of a very large single-mode conden-
sate interacting with a large number of quasiparticles and
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higher-lying excited atoms, whereas it is not a priori nec-
essary that single-mode condensation will correspond to
all experimental conditions [2,14]. Instead of working in
the usual “condensed matter” approach of a condensate
and a set of quasiparticle excitations which are, by defi-
nition, orthogonal to it (which is suitable for large con-
densates) we focus our description in terms of a more
“quantum-optical” approach, i.e. in terms of individual
modes of the trapping potential [3–6], for which one must
in principle consider the condensate spanning a large num-
ber of modes, with the same modes being simultaneously
occupied by non-condensate atoms. Within such a pic-
ture, this paper explicitly discusses the simplest devia-
tion from single-mode condensation in the context of a
bare single-particle basis, in a manner analogous to ex-
isting treatments. Formulating the problem in terms of
bare particle eigenenergies can only be useful in the case
of extremely small, dilute, weakly-interacting condensates,
when the mean field effects are small enough that their in-
duced shifts of the single-particle energies can be treated
as perturbations. Such an approach is nevertheless ben-
eficial for discussing the inherent multi-mode nature of
trapped condensates and their relation to the correspond-
ing (semi-classical) theory of multi-mode photon lasers.

The first part of this paper (Sect. 2) reviews in the
usual manner the formal development of the coupled equa-
tion of motion approach. To simplify the physical picture
and bring out the underlying structure in a clear man-
ner, we focus on a very simple system consisting of the
three lowest trap eigenstates, for which we derive explicit
equations of motion in the Popov approximation [15] in
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Section 3 (with corresponding off-equilibrium contribu-
tions given in Appendix A, and some further clarifica-
tions in Appendix B). By explicitly discussing the inter-
play of two coupled condensed modes, we show how our
treatment reduces to the Hartree-Fock theory for binary
condensates [16] (Sect. 4.1.1). An important advantage
of formulating the theory in terms of bare single-particle
eigenstates is that it allows us to discuss in detail the
analogy between our equations for the coupled dynamics
of two condensed modes, and the corresponding ones aris-
ing in the semi-classical treatments of two-mode photon
lasers (Sect. 4.1.2). We show that, the extent to which this
analogy can be drawn for the inherent multi-mode nature
of a single condensate, depends critically on the choice
of the single-particle basis (i.e. bare or dressed by vari-
ous types of mean fields) in terms of which the analysis is
carried out. Our discussion here is distinct from conven-
tional analogies based on two different condensates which
are spatially separated [17], in different spin states [18], or
outcoupled by radiation applied at two different frequen-
cies [19]. Section 4.2 compares our approach to conven-
tional kinetic treatments, where we show explicitly that
our theory reduces to the multi-mode kinetic treatment of
Walser et al. [5,6], upon shifting our description to a basis
in which the single-particle eigenenergies become dressed
by the usual Hartree-Fock-Bogoliubov (HFB) mean field
potentials. This suggests that, contrary to an implication
in [5], such dynamic equations (and collisional integrals)
are inevitably basis-dependent.

2 The coupled equation of motion approach

Consider a sufficiently dilute, weakly-interacting partially
Bose-condensed trapped gas with a binary-interaction
Hamiltonian

Ĥ =
∑
rs

ΞBare
rs â†râs +

1
2

∑
rsmn

Vrsmnâ
†
râ
†
sâmân. (1)

Here Ξ̂Bare = −(~2∇2)/(2m) + Vtrap(r) contains both ki-
netic energy and trapping potential and Vrsmn represents
the symmetrized form of the interaction potential between
a pair of particles, defined by

Vrsmn =
1
2

{
〈rs|V̂ |mn〉+ 〈rs|V̂ |nm〉

}
where |i〉 = ψi(r) denotes a single-particle eigenstate of
the trap. The single-particle operators âi are related to
the Bose field operator Ψ̂(r, t) via Ψ̂(r, t) =

∑
i ψi(r)âi(t).

We assume the system to be in a symmetry-broken phase
and hence express the single-particle operators âi(t) as [20]

âi(t) = 〈âi〉+ (âi − 〈âi〉) = zi(t) + ĉi(t). (2)

This allows, in general, for a coherent mean-field am-
plitude zi to form in a number of low-lying trap levels.
We can now formulate a non-equilibrium theory for the
coupled evolution of condensate mean field amplitudes

and fluctuations about these values, based on a suitably
truncated hierarchy of coupled equations of motion and
appropriate decoupling approximations.

Possibly the most direct approach for studying the dy-
namics in a closed system is based on solving an appro-
priate set of such equations self-consistently, in terms of
exact interatomic potentials; such an approach has been
discussed, for example, in [3]. In a realistic system, the
number of trap eigenstates will be very large, making such
a procedure computationally very demanding. Since the
most interesting dynamics take place in the low-lying lev-
els, in this paper we have chosen to restrict our analysis
to such levels (although such treatment will also implicitly
yield the behavior of high-lying thermal levels). Accepting
a distinction between low- and high-lying levels allows us
to adiabatically eliminate all high-lying levels appearing
as intermediate states in the equations for the evolution
of averages of low-lying states; this procedure is known
to lead to the renormalization of the exact (single-vertex)
interatomic potential to an effective two-body one (over
high-lying states), as discussed in [21]. We thus arrive at
the situation where the Hamiltonian of the system still has
the general form of equation (1), but with the single-vertex
interatomic potential V replaced by an effective two-body
T -matrix, T , over high-lying states, with the simultaneous
restriction of all bare trap eigenstates being summed over
low-lying levels. For sufficiently dilute systems at low tem-
perature, this restricted effective two-body interaction is
approximately equal to the full two-body T -matrix, T 2B,
giving the scattering of two particles in vacuum. We thus
approximate T in terms of T 2B, by ensuring that purely
two-body effects due to collisions occurring in vacuum are
not double-counted (for a detailed discussion of the rela-
tion of these effective interactions and the renormalization
required to avoid double-counting, the reader is referred
to [21,22]). We note that it is precisely the quantity T 2B

which corresponds, in three dimensions, to the usual bi-
nary s-wave scattering length pseudopotential.

We are interested in working out in a self-consistent
manner the evolution of condensate population and inco-
herent fluctuations about this value, and for consistency
we work throughout this paper with averages of two single-
particle operators. The Heisenberg equation of motion for
such a general product of two operators is given by (set-
ting ~ = 1)

i
d
dt

〈
â†i âj

〉
=

′∑
r

{
ΞBare
jr

〈
â†i âr

〉
−ΞBare

ri

〈
â†râj

〉}
+

′∑
rms

{
Tjsmr

〈
â†i â
†
sâmâr

〉
− T ∗ismr

〈
â†mâ

†
râsâj

〉}
(3)

where the primes indicate summation over low-lying lev-
els. Consistent application of second order perturbation
theory in the weakly-interacting limit (i.e. when the sys-
tem can be well described in terms of single-particle
wavefunctions) should yield correct expressions for en-
ergy level shifts and population damping. To proceed with
our treatment, we must determine whether there are any
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quantities (fluctuations) which evolve faster than others
(mean fields), so that the former can be adiabatically elim-
inated from the first order expressions. For example, in
the usual rate equation treatments, one eliminates all off-
diagonal normal and anomalous averages in favour of (di-
agonal) populations; one often speaks of coherences damp-
ing out faster than populations due to the coupling of the
system to its environment. This gives rise to a set of equa-
tions to second order in the effective potentials, coupling
populations to populations, in what is often termed the
secular approximation [23].

One could, however, argue that the choice of which
low-lying averages can be adiabatically eliminated de-
pends on the basis employed for the description of the
system, i.e. essentially on whether the mean field en-
ergy shifts are correctly taken into account or not. Start-
ing from bare trap eigenenergies, one would not expect
any normal or anomalous averages to be slowly-evolving;
hence, the correct second order expression of equation (3)
in a bare particle basis can be obtained by adiabatic elim-
ination of the entire quantity 〈â†â†ââ〉 by means of its re-
spective equation of motion. This is the procedure adopted
in the main part of this work, which gives rise to com-
plex equations appearing to contain additional terms when
compared directly to similar treatments. However, a sub-
sequent transformation to a dressed single-particle basis
(i.e. dressed eigenenergies) shows clearly that such terms
drop out from the respective equations of motion for popu-
lations in dressed eigenstates, as anticipated. Nonetheless,
an approach in terms of bare single-particle eigenenergies
allows one to draw important analogies between multi-
mode condensation and multi-mode laser theory. Proceed-
ing thus with the treatment in a bare basis, and taking the
operator Ξ̂Bare to be diagonal, we obtain

i
d
dt

〈
â†i â
†
sâmâr

〉
= (ωm + ωr − ωi − ωs)

〈
â†i â
†
sâmâr

〉
+ Fi

(
T, â, â†; t

)
(4)

where ωi correspond to bare trap energies and
Fi(T, â, â†; t) defines the collisional evolution of
〈â†i â†sâmâr〉 in such a basis by [24]

Fi
(
T, â, â†

)
=

′∑
lt

Tmrlt
〈
â†i â
†
sâlât

〉
−

′∑
pq

Tpqis
〈
â†pâ
†
qâmâr

〉
+

′∑
plt

Tprlt
〈
â†pâ
†
i â
†
sâmâlât

〉
+

′∑
plt

Tpmlt
〈
â†pâ
†
i â
†
sârâlât

〉

−
′∑
pql

Tpqls
〈
â†pâ
†
qâ
†
i âlâmâr

〉
−

′∑
pql

Tpqli
〈
â†pâ
†
qâ
†
sâlâmâr

〉
·

(5)

Assuming real eigenvalues, we obtain the following exact
integral relation

d
dt

〈
â†i âj

〉
= −i

(
ωj − ωi

)〈
â†i âj

〉
− i

[ ′∑
rms

Tjsmr
〈
â†i â
†
sâmâr

〉
− e.c.

]

−
{ ′∑
rms

Tjsmr

∫ t

t0

dt′e−i(ωm+ωr−ωs−ωi)(t−t′)

× Fi(T, â, â†; t′) + e.c.

}
(6)

where e.c. stands for the exchange conjugate (i.e. conju-
gate expression with labels i and j interchanged). By using
the definition âi = zi + ĉi, we obtain all second-order col-
lisional terms of our approach. However, for these to be
useful, we must express them in terms of a closed sys-
tem of equations, by imposing suitable approximations.
Firstly we decouple averages containing more than two
single-particle operators via〈
ĉ†r ĉ
†
sĉmĉn

〉
≈
〈
ĉ†rĉm

〉〈
ĉ†sĉn

〉
+
〈
ĉ†r ĉn

〉〈
ĉ†sĉm

〉
+
〈
ĉ†r ĉ
†
s

〉〈
ĉmĉn

〉
(7)

and〈
ĉ†pĉ
†
r ĉ
†
sĉq ĉlĉt

〉
≈〈

ĉ†pĉq
〉(〈

ĉ†rĉl
〉〈
ĉ†sĉt

〉
+
〈
ĉ†rĉt

〉〈
ĉ†sĉl

〉)
+
〈
ĉ†pĉl

〉(〈
ĉ†r ĉq

〉〈
ĉ†sĉt

〉
+
〈
ĉ†r ĉt

〉〈
ĉ†sĉq

〉)
+
〈
ĉ†pĉt

〉(〈
ĉ†rĉq

〉〈
ĉ†sĉl

〉
+
〈
ĉ†r ĉl

〉〈
ĉ†sĉq

〉)
+
〈
ĉq ĉl

〉(〈
ĉ†pĉ
†
r

〉
〈ĉ†sĉt〉+

〈
ĉ†pĉ
†
s

〉
〈ĉ†r ĉt〉+

〈
ĉ†r ĉ
†
s

〉
〈ĉ†pĉt〉

)
+
〈
ĉq ĉt

〉(〈
ĉ†pĉ
†
r

〉
〈ĉ†sĉl〉+

〈
ĉ†pĉ
†
s

〉
〈ĉ†r ĉl〉+

〈
ĉ†rĉ
†
s

〉
〈ĉ†pĉl〉

)
+
〈
ĉlĉt
〉(〈

ĉ†pĉ
†
r

〉
〈ĉ†sĉq〉+

〈
ĉ†pĉ
†
s

〉
〈ĉ†r ĉq〉+

〈
ĉ†r ĉ
†
s

〉
〈ĉ†pĉq〉

)
.(8)

Based on our formulation in terms of effective interactions,
we further impose the Markov approximation which takes
the quantity Fi(T, â, â†) out of the integrand and defines
the intermediate propagators. This implies the assump-
tion that the operators âi evolve freely between collisions
via âi(t′) = e+iωi(t−t′)âi(t). Thus, the second order con-
tributions of equation (6) acquire the general form[

d
dt

〈
â†i âi

〉]
T 2

=

−
′∑

rms

{[
Tismr

∑
···

(∫ t

t0

dτe−i(∆ω···)(t−t′)
)

× T··· ˜Fi···(t)

]
+ e.c.

}
(9)



358 The European Physical Journal D

where the above quantity T··· ˜Fi···(t) corresponds to Fi de-
fined by equation (5), and this notation has been used to
indicate that the dotted indices of the second T are the
same indices as the ones appearing in the exponential of
the integrand, as a result of the Markov approximation.
Following the notation of Gardiner et al. [1], we now re-
write the above integral as

lim
η→0+

∫ ∞
0

dτe±i(∆ω±iη)τ = δ(p)(∆ω)

= πδ(∆ω)± iP
(

1
∆ω

)
(10)

where P(1/∆ω) corresponds to the principal value of the
integral and the upper limit of integration has been ap-
proximated by (t− t0)→∞, based on the usual assump-
tion that successive collisional events are well separated in
time. Having discussed our approximations, we can now
write down the coupled rate equations for coherent, inco-
herent and total populations.

3 Rate equations for multi-level condensation

In this section, we focus on the application of the above
methodology to a simple three-level system which we
discuss within the Popov approximation [15], in which
anomalous averages of the non-condensate are ignored in
the final expressions. We are well aware that this system
is rather idealized and do not claim that it will accurately
reproduce the entire dynamics of condensed and thermal
atoms. In fact, corrections beyond Popov may be signif-
icant, as shown in this context by Walser et al. [6] (see
also [25–27]), and we defer their explicit discussion to a
separate paper (but see also Sect. 4.2). In the current
paper we are mainly concerned with addressing the sim-
plest departure from single-level condensation, and how
this might affect the dynamics of low-lying levels. To this
aim, such a system is ideal for a simple comparison with
other kinetic theories [1,2,5,7,8,13]. Perhaps more signif-
icantly, such a small system will enable us to discuss in
an explicit manner the desired analogy of the multi-mode
nature of a single condensate with multi-mode semiclassi-
cal laser theory [28]. Our notation is as follows: the total
population Ni in level i is written as a sum of “coherent”
|zi|2 and “incoherent” ni = ρii populations, via

Ni =
〈
â†i âi

〉
=
〈
ĉ†i ĉi

〉
+ |zi|2 = ni + |zi|2 (11)

with off-diagonal coherent and incoherent matrix elements
respectively defined by ζij =

(
z∗j zi

)
and ρij =

〈
ĉ†j ĉi

〉
.

3.1 Evolution of total populations

We start with expressions for the coupled evolution of to-
tal populations in the three lowest-lying bare levels under
the assumption that all of them may exhibit partial con-
densation. Since we are dealing with a closed system, the

evolution of populations in these levels trivially satisfy

dN0

dt
=

dN2

dt
= −1

2

(
dN1

dt

)
(12)

where

dN0

dt
= −2i [T0211 (ρ10 + ζ10) ρ12 − c.c.]

+
{(
RT|0211|2

+ Q̃0211
ijji

)
+ c.c.

}
· (13)

Here we have defined the collisional redistribution rate

RT|0211|2
=

2Γ0211

[
(N0 + 1)(N2 + 1)N2

1 −N0N2(N1 + 1)2
]

− Γ0211(1 +N0 +N2)|z1|4 + R̃T|0211|2
(14)

where

Γ0211 = |T0211|2 lim
η→0+

∫ ∞
0

dτe±i(ω0+ω2−2ω1±iη)τ

= |T0211|2δ(p)(ω0 + ω2 − 2ω1) (15)

and the “tilde” in R̃T|0211|2
and Q̃0211

ijji denotes contribu-
tions which are off-diagonal in ρ or ζ, whose explicit ex-
pressions can be found in Appendix A. In the context of
the well-known Boltzmann scattering factors, the appear-
ance of the additional term ∼ Γ0211|z1|4 may appear some-
what perplexing. We stress that such contributions only
arise because of our choice to formulate our description
in terms of a bare basis, and we explicitly show in Sec-
tion 4.2 that such terms “disappear” in the usual formu-
lation in terms of a self-consistently dressed basis (where
they become incorporated in the dressing of the bare trap
eigenstates).

Unlike the evolution of total populations, the dynam-
ics of condensed and thermal atoms will also depend on
processes of the general form TijjiTkllk which will be in-
trinsically dispersive. For simplicity, we shall henceforth
limit our discussion to the case of only two partially con-
densed levels, namely z0, z1 6= 0, with level 2 being the
lowest purely incoherent level treated here.

3.2 Evolution of condensate populations

The method used to obtain the evolution of condensate
populations, is essentially the same as the one used for
total populations (Eq. (9)). For ease of our subsequent
comparison with the semi-classical laser theory, in this
section we directly obtain equations for the modulus |zi|2
of the condensate mean field amplitude zi and not for zi
itself. These are given by

d|zi|2
dt

= −
′∑

rms

{[
iTismrz∗i

〈
â†sâmâr

〉]
+ c.c.

}
(16)

where the quantity analogous to Fi of equation (5) is ob-
tained from the equation of motion of the entire quantity
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z∗i

〈
â†sâmâr

〉
and not just

〈
â†sâmâr

〉
(see Appendix B).

Thus, to second order in the effective interaction, we
obtain

d|zi|2
dt

= −i
′∑

rms

[
Tismrz

∗
i

〈
â†sâmâr

〉
− c.c.

]
+
[
Xii(T 2) + c.c.

]
(17)

with all T 2 collisional contributions summarized in
Xii(T 2), which can be written as

Xii(T 2) = Rcon
i + Si +Ei + X̃ii(T 2) (18)

Rcon
i corresponds to redistribution collisions affecting the

level i condensate, Si corresponds to self-interactions
within level i, and Ei gives the exchange collisions of
level i with its nearby levels, whereas the term X̃ii(T 2)
corresponds to all off-diagonal contributions. For two con-
densed levels, in our simplified three-level system, the re-
spective expressions are

Rcon
0 = Γ0211

×


2|z0|2

[
(n2 + 1)n2

1 − n2(n1 + 1)2
]

+4|z0|2|z1|2 [(n2 + 1)n1 − n2(n1 + 1)]

+|z0|2|z1|4 [(n2 + 1)− n2]

 (19)

S0 = −λ0000

[
2|z0|2

[
(n0 + 1)2n0 − n2

0(n0 + 1)
]

+|z0|4
[
(n0 + 1)2 − n2

0

] ]
(20)

E0 =

−4λ0110


|z0|2 [(n0 + 1)(n1 + 1)n1 − n0n1(n1 + 1)]

+|z0|2|z1|2
{

[(n0 + 1)(n1 + 1)− n0n1]

+ [(n0 + 1)n1 − n0(n1 + 1)]

}
−4λ0220|z0|2 [(n0 + 1)(n2 + 1)n2 − n0n2(n2 + 1)] (21)

and

Rcon
1 = 2Γ0211

×


2|z1|2 [(n1 + 1)n0n2 − n1(n0 + 1)(n2 + 1)]

+2|z0|2|z1|2 [(n1 + 1)n2 − n1(n2 + 1)]

−|z1|4 [(n0 + 1)(n2 + 1)− n0n2]

−|z0|2|z1|4 [(n2 + 1)− n2]

 (22)

S1 = −λ1111

[
2|z1|2

[
(n1 + 1)2n1 − n2

1(n1 + 1)
]

+|z1|4
[
(n1 + 1)2 − n2

1

] ]
(23)

E1 =

− 4λ0110


|z1|2 [(n0 + 1)(n1 + 1)n0 − n0n1(n0 + 1)]

+|z0|2|z1|2
{

[(n0 + 1)(n1 + 1)− n0n1]

+ [(n1 + 1)n0 − n1(n0 + 1)]

}
− 4λ1221|z1|2 [(n1 + 1)(n2 + 1)n2 − n1n2(n2 + 1)] (24)

where

λijji = |Tijji|2 lim
η→0+

∫ ∞
0

dτe−ητ (25)

while the expressions for the off-diagonal contributions
X̃ii(T 2) can be found in Appendix A.

3.3 Evolution of non-condensate populations

The evolution of the normal averages of levels 0 and 1 is
governed by the equation

d
dt

〈
ĉ†i ĉi

〉
=

−
′∑

rms

{
iTismr

[〈
â†i â
†
sâmâr

〉
− z∗i

〈
â†sâmâr

〉]
− c.c.

}
+
[
Yii(T 2) + c.c.

]
(26)

where Yii(T 2) = Rth
i − Si − Ei + Ỹii(T 2) and Rth

i are
defined by

Rth
0 = Γ0211

×


2
[
(n0 + 1)(n2 + 1)n2

1 − n0n2(n1 + 1)2
]

+4|z1|2 [(n0 + 1)(n2 + 1)n1 − n0n2(n1 + 1)]

+|z1|4 [(n0 + 1)(n2 + 1)− n0n2]

 (27)

Rth
1 = 4Γ0211

×



[
(n1 + 1)2n0n2 − n2

1(n0 + 1)(n2 + 1)
]

+|z0|2
[
(n1 + 1)2n2 − n2

1(n2 + 1)
]

+|z1|2 [(n1 + 1)n0n2 − n1(n0 + 1)(n2 + 1)]

+|z0|2|z1|2 [(n1 + 1)n2 − n1(n2 + 1)]

 · (28)

The evolution of the non-condensate component of level 2
is given by equations (12–14), in the limit z2 = 0. The
respective expressions for the off-diagonal contributions
Ỹii(T 2) can be found in Appendix A.

4 Interpretation of rate equations

We now turn our attention to the interpretation of the
above equations, focusing in Section 4.1 only on the
condensate evolution. Ignoring, at first, re-distributional
dynamics and off-diagonal contributions, we show how
they reduce to the Hartree-Fock coupled nonlinear
Schrödinger equations conventionally used for describing
two-component condensates (Sect. 4.1.1). By additionally
considering the redistribution dynamics, we further dis-
cuss the analogy of a single inherently multi-mode con-
densate to the semi-classical photon laser theory [28], with
our discussion being limited to only two modes for clar-
ity (Sect. 4.1.2). By further considering the evolution of
uncondensed, and thus also of total populations of each
level, we compare and contrast our approach to the ki-
netic theory of Walser et al. [5], which is the formal multi-
mode kinetic theory closest to the formalism of this paper
(Sect. 4.2).
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4.1 Coupled condensate evolution

4.1.1 Hartree-Fock theory for binary condensates

Let us initially forget about the presence of level 2 in
our system and focus on the interactions between the
two lowest levels in the trap (i.e. set n2 = z2 = 0 and
V0211, λ0220, λ1221 → 0), which amounts to discussing two
coupled partially-condensed systems.

Using equations (17, 18) and (20, 21) we can deduce
the evolution of the ground state condensate mean field
z0 (as opposed to |z0|2), which to second order reads

dz0

dt
= −iω0z0

−i [T0000 − iλ0000(1 + 2n0)]
(
2n0 + |z0|2

)
z0

+λ0000

(
2n2

0

)
z0

−2i [T0110 − 2iλ0110(1 + n0 + n1)]
(
n1 + |z1|2

)
z0

+2λ0110 (2n0n1) z0 − 4λ0110 (n1 − n0) |z1|2z0. (29)

The terms in square brackets can be identified as the cor-
responding matrix elements of an effective many-body in-
teraction introduced, strictly speaking, only over high-
lying levels; this generalized effective interaction can
be straightforwardly replaced by the usual many-body
T -matrix TMB

ijji (over all levels), discussed in [29], by sub-
tracting from the second order expression of equation (29)
(i.e. terms ∼ λijji), a term corresponding to the scatter-
ing of particles in vacuum, so that one ends up correctly
calculating the change in the effective interaction when
the pair of atoms collides in a condensed gas (as opposed
to the vacuum) [21,22,25,27]. Since our analysis has been
carried out in terms of bare particle energies ωi, such a
renormalization of the terms appearing in equation (29)
merely amounts to neglecting the factor of 1 in (1 + 2n0)
and (1 + n0 + n1) [30]. We note that the same procedure
should be carried out in all second order terms whose scat-
tering amplitude depends on factors of the form

|Tijkl|2|zi|2|zj |2 [(nk + 1)(nl + 1)− nknl]

(if these are to be written in terms of TMB), and such
terms appear in equations (20–24) and (27). After “renor-
malization”, the square bracket appearing in the second
term of equation (29) takes the form

T0000 − iλ0000(1 + 2n0) =

T 2B
0000 + T 2B

0000 lim
η→0+

∫ ∞
0

dτ
i

e−ητ (2n0)T 2B
0000

=
[
TMB

0000

]
T 2 (30)

where
[
TMB

0000

]
T 2 corresponds to the second order expres-

sion for the many-body T -matrix; a similar identification
can be made for the square bracket of the fourth term
of equation (29) (where a factor of two arises from the
symmetric interchange of atoms 0 and 1 corresponding to
direct and exchange Hartree-Fock terms).

If one further ignores the last term of equation (29)
(which corresponds diagrammatically to ignoring bubble
diagrams with respect to the bare many-body ladder di-
agrams), one obtains the lowest order expression of the
general equation

i
dz0

dt
= ω0z0 + TMB

0000

(
2n0 + |z0|2

)
z0

−2TMB
0000

[
lim
η→0+

∫ ∞
0

dτ
i

e−ητ
] (
n2

0

)
TMB

0000z0

+2TMB
0110

(
n1 + |z1|2

)
z0

−2TMB
0110

[
lim
η→0+

∫ ∞
0

dτ
i

e−ητ
]

(2n0n1)TMB
0110z0 (31)

with the second and fourth lines ensuring correct scat-
tering factors for condensate feed collisions from thermal
atoms. This expression agrees with the equation for con-
densate evolution derived by one of us elsewhere [4]. Al-
though this equation is valid when dealing with a single
condensed trap level, the somewhat heuristic neglect of
−4λ0110 (n1 − n0) |z1|2z0 mentioned above suggests that
it must be interpreted with some caution when the con-
densate spans more than one bare trap eigenstates [31].

We now show explicitly how the above equation
reduces to the coupled finite temperature nonlinear
Schrödinger equations used for two-component condensa-
tion [16]. For this we must first assume that the gas is
sufficiently dilute, so that we can further ignore in equa-
tion (31) the effect of the surrounding medium on binary
collisions; this amounts to replacing TMB

0ii0 (i = 0, 1) by the
full two-body T -matrix T 2B

0ii0, while simultaneously ignor-
ing the “kinetic” (many-body) contributions correspond-
ing to the second and fourth lines of equation (31). By
further approximating T 2B by the usual pseudopotential
Uijδ(r − r′) valid in 3D, where Uij is parameterized in
terms of the scattering length for the collision of an atom
in level i with an atom in level j (i, j = 0, 1) and trans-
forming to coordinate space, we obtain

i
∂Φ0

∂t
= H

(0)
0 Φ0 + U00

(
|Φ0|2 + 2ñ0

)
Φ0

+ 2U01

(
|Φ1|2 + ñ1

)
Φ0 (32)

where Φi and ñi denote the condensate mean field and the
non-condensate density of component i, with H

(0)
i being

the corresponding bare trap Hamiltonian (kinetic energy
plus trapping potential). By analogy,

i
∂Φ1

∂t
= H

(0)
1 Φ1 + U11

(
|Φ1|2 + 2ñ1

)
Φ1

+ 2U01

(
|Φ0|2 + ñ0

)
Φ1. (33)

Equations (32, 33) correspond to the well-known finite
temperature Hartree-Fock equations for two-component
condensation [16].

4.1.2 Two-mode condensation vs. semi-classical laser theory

In the language of quantum optics, a system in which the
condensate mean field spans more than one single-particle
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eigenstate should be analogous to a photon laser in multi-
mode operation. Exploring the formal connection between
the two, with their similarities and differences, was in fact
part of the motivation for this work and the main rea-
son for formulating our approach in terms of bare parti-
cle eigenenergies. If such a connection were to be taken
literally, one would expect the coupled condensate mean
field equations to resemble those of the two-mode laser.
Even though we have assumed that level 2 is not itself
condensed (and may even be initially unoccupied even by
thermal atoms), we should still also consider its presence
here; this is because the existence of level 2 is an inher-
ent property of the system that cannot be ignored, since
it will affect the evolution of the two lowest condensed
modes z0, z1 via collisional redistribution processes. Com-
bining equations (19–24) for the second order contribu-
tions to the evolution of condensate amplitudes in a bare
single-particle basis, they are found to exhibit the general
structure

d|z0|2
dt

= αRSEH
0 |z0|2 − βS

0 |z0|4 − θRE
01 |z0|2|z1|2

+ξR
01|z0|2|z1|4, (34)

d|z1|2
dt

= αRSEH
1 |z1|2 − βRS

1 |z1|4 − θRE
10 |z0|2|z1|2

+ξR
10|z0|2|z1|4. (35)

Focusing initially only on the first line of each of the above
coupled equations, we note that they have the same form
as those of the two-mode photon laser intensity equa-
tions [28], if we identify |zi|2 with the mode intensity.
By analogy, we thus refer to the coefficients appearing
in equations (34, 35) as: the “net gain” coefficient αi of
each mode, the “self-saturation” βi of each mode and the
“cross-saturation” coefficients θij . In contrast to the opti-
cal laser where such equations arise from the polarization
of the active medium, the nonlinearity in the case of the
atom laser is intrinsic, arising from atom-atom interac-
tions; this is absent in optical lasers, since there are no
photon-photon interactions affecting the coherent photon
field. Hence, the above coefficients αi, βi and θij depend
on incoherent populations ni and collisional rates λijji
and Γ0211. The superscripts R, S, E, H used to define the
above coefficients stand for Redistribution, Self, Exchange
and Higher-level-exchange terms. The above coefficients
are respectively defined by

αRSEH
i = αR

i − αS
i − αE

ij − αH
ik (36)

where

αR
0 = 2Γ0211

[
(n2 + 1)n2

1 − n2(n1 + 1)2
]

αR
1 = 2Γ0211 [n0n2(n1 + 1)− (n0 + 1)(n2 + 1)n1]

αS
i = 2λiiii

[
(ni + 1)2ni − (ni + 1)n2

i

]
αE
ij = 4λijji [(ni + 1)(nj + 1)nj − (nj + 1)ninj ]

αH
ij = 4λikki [(ni + 1)(nk + 1)nk − (nk + 1)nink]

(37)

β
(R)S
i =

(
βR
i

)
+ βS

i (38)

where βR
0 = 0 and{
βR

1 = 2Γ0211 [(n0 + 1)(n2 + 1)− n0n2]

βS
i = λiiii

[
(ni + 1)2 − n2

i

] (39)

θRE
ij = θR

ij + θE
ij (40)


θR

01 = −4Γ0211 [n1(n2 + 1)− (n1 + 1)n2] = −θR
10

θE
ij = 4λijji

{
[(ni + 1)(nj + 1)− ninj ]
+ [(ni + 1)nj − (nj + 1)ni]

}
(41)

ξR
01 = Γ0211 [(n2 + 1)− n2] = −1

2
ξR
10. (42)

Knowledge of their detailed form, enables us to draw im-
portant conclusions regarding the signs of the total coef-
ficients αi, βi, θij of equations (34, 35). In particular we
find, just as in the photon laser, the coefficients βi > 0
always, thus giving rise to self-saturation of the mode in-
tensity |zi|2, whereas coefficients αi and θij can be posi-
tive or negative (depending on the values of ni, λijji and
Γ0211). The net gain coefficient of each mode is given by
equation (36); here αR

i gives the gain coefficient due to re-
distribution collisions |T0211|2 and can be positive or neg-
ative, depending on the relative values of n0, n1 and n2.
The remaining contributions to equation (36) arise from
collisions of an atom in level i with an atom in level j or k
(where i = 0, 1 and j = 0, 1, 2, while k 6= i, j), and leads to
saturation of intensity growth since αS

i , α
E
i , α

H
i > 0 always.

The cross-saturation rates θij contain contributions from
exchange and redistribution collisions and can be positive
or negative.

An important difference between equations (34, 35)
and the corresponding ones for two-mode photon lasers
is the presence of the higher order cross-saturation terms
ξij |z0|2|z1|4, which arise solely as a result of collisional re-
distribution. In deriving the two-mode photon laser equa-
tions, one conventionally performs a perturbative expan-
sion of the polarization of the active medium in terms
of laser intensity. For near-threshold operation and weak
laser intensities, the third order perturbative expansion
of the medium polarization is usually sufficient, and such
a truncation generates at most terms proportional to the
square of the laser intensity. Terms of third order in the
laser intensity (as well as higher order ones) would indeed
arise in two-mode photon laser theory, if one extended the
perturbative treatment of the polarization to fifth order
(or beyond).

In the case of Bose-Einstein condensation there is no
active medium to be polarized, and the nonlinearity of
the system is due to intrinsic atom-atom interactions. In
this case, the highest order |z0|2m|z1|2n to be included in
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the two-mode equations for the “intensities” |zi|2 is based
on the number of single-particle operators appearing in
the nonlinear interaction term in the Hamiltonian of the
system, i.e. whether one includes only two-body collisions
(as usual, in the dilute limit na3 � 1), or also three-body
collisions (or higher). In the usual case of two-body colli-
sions as defined by equation (1), the resulting equations
for |zi|2 may contain terms up to order (z∗z)3; so, in gen-
eral, it would not appear justified to ignore contributions
of third order in the mode intensities. We note that the
coefficients of the higher order cross-saturation terms ap-
pearing in equations (34, 35) have opposite signs and are
given by ξ10 = −2ξ01, where ξ01 = Γ0211 > 0.

The above discussion has been given in terms of bare
amplitudes |zi|2, and we should note that the form of these
equations changes when the |zi|2 refer to amplitudes of
dressed modes. In particular, when the |zi|2 refer to am-
plitudes in modes dressed only by the condensate mean
field (assuming it is physically meaningful to speak of
more than a single condensed mode in such a dressed ba-
sis), such higher order cross-coupling contributions would
not arise, thus yielding a direct analogy with the intensity
equations for two-mode photon lasers. The justification for
this is given in the next section, where we discuss how the
second order collisional integrals become modified, upon
shifting our single-particle eigenstates to a basis dressed
by mean fields. The “exact” analogy between two-mode
condensation and optical lasers arising in this case might
suggest that even in a basis dressed by the condensate
mean field, one should, in principle, deal with more than
one condensed modes in a trapped assembly. This anal-
ogy of a single, inherently multi-mode, condensate with
the usual semi-classical multi-mode photon laser theory,
however, appears to break down when shifting to a ba-
sis including higher mean field effects (i.e. those due to
uncondensed atoms, anomalous averages, etc.)

In this section, we have presented some similarities
and differences between two-mode Bose-Einstein conden-
sation and semi-classical two-mode photon laser theory. A
more detailed investigation should discuss such equations
in the presence of pumping, evaporative cooling and co-
herent outcoupling (in a manner analogous to single-mode
atom laser models [18,33–36]). The first obvious modifi-
cation that would occur in this case is that the “net gain”
coefficient(s) of the lasing mode(s) should become pos-
itive and large, since the contribution of an irreversible
evaporative cooling mechanism combined with the redis-
tribution collisions should result in a large flow of particles
towards such mode(s). At the same time, of course, the αi
coefficients will acquire an additional negative contribu-
tion whose value will depend on the rate of outcoupling of
atoms from the particular condensed level. This should en-
able the system to reach a steady state, with the coherent
amplitude growth being stabilized both by the outcou-
pling mechanism, as well as by the collisionally-induced
dephasing [37] due to self (λiiii) and exchange (λijji) in-
teractions. In our formalism, such dephasing can be viewed
as destruction of the coherent mean field amplitude |zi|2
in favour of the “incoherent populations” ni (i.e. transfer

of population from “coherent” to “incoherent”). Inherent
two-body and three-body inelastic loss processes, which
have recently been shown to be essential for reaching a
steady state for an atom laser [38], will affect the coher-
ent and incoherent populations of a particular mode in a
different manner due to the nature of our mean field decor-
relation, e.g. 〈â†i â

†
i â
†
i âiâiâi〉 ∼

(
|zi|6 + 6n3

i

)
, thus creating

an essential irreversibility for the condensate mean field
|zi|2 to dominate over its corresponding fluctuations ni.
By only outcoupling the lowest condensed mode of the
system, one could, for example, achieve a kind of “popu-
lation inversion”, in the sense that the largest condensate
particle number accumulation might occur in some state
other than the ground state of the bare trap. In closing
this subsection, we note that the quantum nature of the
multi-mode atom laser is implicit in the general Fokker-
Planck treatment developed by Stoof [2].

4.2 Links to other kinetic theories

The expressions given earlier for the evolution of con-
densed and uncondensed components contain terms in the
condensate mean field beyond order (z∗z), and at first
sight this appears to be in disagreement with existing ki-
netic theories [2,5,7,8,13]. For example, comparing our
final expressions for total populations to those of Walser
et al. [5] (in the corresponding limit of diagonal popula-
tions and no anomalous averages), we appear to obtain an
excess ∆N for the populations of levels 0 and 2 (whereas
level 1 is underestimated by twice that amount), with ∆N
given by

∆N = 2Γ0211|z1|2


4|z0|2 [(n2 + 1)n1 − n2(n1 + 1)]

+|z0|2|z1|2 [(n2 + 1)− n2]

+|z1|4 [(n0 + 1)(n2 + 1)− n0n2]

 ·
(43)

Since all terms of equation (43) are proportional to |z1|2, it
is clear that our equations will assume the usual form (e.g.
as discussed in Walser et al. [5]) in the limit of extremely
weak condensation (i.e. when only the lowest trap eigen-
state is occupied by the condensate). The natural question
arising then is whether such equivalence remains beyond
this simple limit.

The key to understanding this apparent inconsistency
is to note that our treatment has so far been given in
terms of single-particle eigenfunctions, whose energies are
bare (unshifted) ones, as if the trap were completely void.
However, since the trap contains a large atomic medium
which is condensed, the collisions will actually occur in the
presence of the condensate, which forces the eigenenergies
to vary in time due to the existing mean field potentials.
To account for this, one can thus convert from the simple
picture in terms of unshifted energies employed above, to
the conventional one in which the effects of the mean fields
are included into suitably “renormalized” basis eigenener-
gies [1,2,5]. In the next section we show explicitly that
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shifting our basis in a suitable manner identically repro-
duces the kinetic theory of Walser et al. [5], thus providing
an alternative derivation of the latter theory.

To understand the relation of our theory to existing
kinetic treatments, we must, in first instance, explain the
physical origin of all terms of equation (43). We recall from
equation (3) that all collisional contributions affecting the
total population of a particular level i arise from terms of
general structure [

∑
rms Tismr〈â

†
i â
†
sâmâr〉+h.c.]. Defining

in the usual manner [3,20,24] the quantities ρji = 〈ĉ†i ĉj〉
and κjk = 〈ĉk ĉj〉 and focusing initially on the first line of
equation (43), we note that terms |z0|2|z1|2 arise from the
elimination of ρ appearing in 〈a†a†aa〉 ∼ [4ρ(z∗z) + c.c.],
which, among other contributions leads to

dNi
dt

= −4
∑
rms

Tismrz
∗
i

×
{∑
klt

T
(δ)
mltk [ρks(z∗l zt)]− T

(δ)
klts [ρmk(z∗l zt)]

}
zr

+ c.c. (44)

Here the notation T (δ) stands for the correspond-
ing two-body T -matrix multiplied by the approxi-
mately energy-conserving integral of equation (10), and
the above term clearly contains a contribution ∼{
|T0211|2z∗0 [(n1 − n2)(z∗1z0)] z1 + c.c.

}
. These latter terms

would obviously not arise if the quantity ρ was consid-
ered essentially constant, as might be more appropriate,
for example, for a rapidly-thermalizing “hydrodynamic”
system. Similarly, terms of order |zi|4 (i.e. second line of
Eq. (43)) arise from the elimination of the pair anomalous
average κ in 〈a†a†aa〉 ∼ [κ(z∗z∗) + c.c.], yielding (among
other terms)

dNi
dt

= −
∑
rms

Tismr (z∗i z
∗
s)

×
{∑

pq

[
T (δ)
mrpq +

∑
l

(
T

(δ)
mlpqρrl + V

(δ)
lrpqρml

)]
(zpzq)

}
+ c.c. (45)

which leads to ∼
{
|T0211|2(z∗1z∗1)(1 + n0 + n2)(z1z1)+c.c.

}
This proves that our expressions explicitly contain anoma-
lous condensate terms (zz) and (z∗z∗), in contrast to the
non-condensate anomalous average κ which has been ne-
glected from all final expressions due to the application of
the Popov approximation.

Finally, terms of order (z∗z)3 (last contribution of
Eq. (43)) can only arise from elimination of z (or z∗) wher-

ever it appears in the first order expressions, thus yielding

dNi
dt

= −
∑
rms

Tismrz
∗
i

{
z∗szm

∑
pql

T
(δ)
rlpq(z

∗
l zpzq)


+ z∗s

∑
pql

T
(δ)
mlpq(z

∗
l zpzq)

 zr}

+
∑
rms

Tismr

{
z∗i

∑
pql

T
(δ)
pqls(z

∗
pz
∗
qzl)

 zmzr
+

∑
pql

T
(δ)
pqli(z

∗
pz
∗
qzl)

 (z∗szmzr)

}
+c.c. (46)

where the products (z∗z(∗)z) appearing immediately after
each T

(δ)
··· are now the ones arising from the elimination

of a z or z∗ from the first order expression in T (z∗z∗zz).
This allows us to interpret the term ∼ |T0211|2|z0|2|z1|4 of
equation (43) as arising from the terms (z∗zz) generated
in second order expressions, and these could be loosely in-
terpreted as arising either (i) from condensate anomalous
averages of the form (zizj), or (ii) from off-diagonal coher-
ent terms (z∗i zj), with the two statements being equiva-
lent and showing that it would not be justified to include
off-diagonal (z∗i zj), while ignoring condensate anomalous
averages (zizj).

In short, the above analysis shows clearly that all terms
(z∗z), (zz) and (z∗z∗) of second or higher order appearing
in equations (13, 17, 26) and hence (43) can only be gener-
ated by the adiabatic elimination of quantities z, ρ and κ
from the corresponding first order expressions. In particu-
lar, the terms of equation (43) respectively arise from the
adiabatic elimination of the quantities ρ12, z2 and κ02.
Such elimination is fully justified in a bare basis, which
assumes that all quantities evolve in an analogous (rapid)
fashion and should thus be treated consistently. However,
transformation to a dressed basis automatically restricts
certain quantities to be slowly-evolving (which parameters
are slowly-evolving depends explicitly on the choice of un-
perturbed basis dressing the single-particle eigenstates),
so that their elimination can no longer be justified. In the
next section we thus extend the above discussion to show
explicitly that our treatment yields precisely the second
order collisional integrals of Walser et al. [5], upon renor-
malizing our single-particle eigenenergies to those dressed
by HFB mean fields.

4.2.1 Equivalence to theory of Walser et al.

To show explicitly the link of our treatment to the kinetic
theory of Walser et al. [5], we now focus on the general
expression for the normal uncondensed component in an n-
level system. To establish exact analogy, in this section we
further incorporate the uncondensed anomalous average κ
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into our treatment, since this is explicitly present in the
expressions of Walser et al. [5].

After much algebraic manipulation of the second or-
der contributions to equation (26), we hence obtain the
following result for the second order collisional integrals
arising within our bare basis[

d
dt

(ρii)
]Bare

T 2

=
[

d
dt

(ρii)
]Walser

T 2

+

(∑
rms

Tismr

{
(2ρmsρri + κmrκ

∗
is)

+ (2ρmiz∗szr + zmzrκ
∗
is)

}
+ h.c.

)
.

(47)

The first term in the above expression has exactly the
same form as the second order collisional integrals ob-
tained by Walser et al. [5] (with the only difference being
that in our approach the eigenenergies of Eq. (10) are now
explicitly given by their bare values ωi), while the second
term yields all the additional terms of our treatment aris-
ing when working within a bare-particle basis. The terms
within the curly bracket appearing in the latter term de-
note the corresponding second order contributions arising
from the adiabatic elimination of the quantities within
the brackets, in the particular basis chosen. Their explicit
form is obtained by the formal solution of their respec-
tive equations of motion given below, and such second
order contributions therefore implicitly include the
energy-conserving integral of equation (10). In the full
Hamiltonian of equation (1), the equations of motion for
the above quantities are given by [3,24]

i~
dzn
dt

=
∑
k

ΞBare
nk zk+

∑
ijk

Tnijk [z∗i zjzk + κjkz
∗
i + 2ρjizk]

(48)

i~
dρji
dt

=
∑
n

(
ΞBare
jn ρni −ΞBare

ni ρjn
)

+
∑
r

[ηjrρri − ρjrηri]−
∑
r

[κjr∆∗ri −∆jrκ
∗
ri] (49)

i~
dκkj
dt

=
∑
n

(
ΞBare
jn κnk +ΞBare

kn κjn
)

+
∑
s

[
ηksκsj + κksη

∗
sj

]
+∆kj +

∑
s

[
ρks∆sj +∆ksρ

∗
sj

]
(50)

where we have ignored in the final expressions higher
order correlations such as 〈ĉ†ĉĉ〉 and 〈ĉĉĉ〉 which arise
in the above expressions (their effect will be discussed
elsewhere). In the above expressions, we have fur-
ther defined ηpq = 2

∑
kl Tpklq [z∗kzl + ρlk] and ∆pq =∑

kl Tpqkl [zkzl + κkl]. Choosing to describe our system
in terms of bare trap eigenenergies essentially amounts
to diagonalizing the bare trap Hamiltonian H0 =

∑
ij Ξ

Bare
ij 〈â†i âj〉. In that case, the energies ωi appearing

in the energy-conserving condition (10) correspond to the
eigenstates of the harmonic trap.

However, instead of working with a bare basis, one
can choose a dressed “unperturbed” basis (H0 + HQ) in
which to define the renormalized single-particle eigenen-
ergies, via

Ĥ = (H0 +HQ) + (V −HQ) (51)

where V corresponds to the binary collision Hamiltonian
defined in equation (1) and HQ denotes the quasiparticle
Hamiltonian

HQ =
1
2

∑
pq

{
hpq
(
ĉ†pĉq + ĉq ĉ

†
p

)
+
(
∆pq ĉ

†
pĉ
†
q +∆∗pq ĉq ĉp

)}
(52)

with hqp =
∑
pq

(
ΞBare
pq + ηpq

)
. In this case, one is incorpo-

rating part of the collisional evolution of equations (48–50)
into their “free evolution frequencies” ωi, which now be-
come dressed to ω̃i. We thus find that when working in the
usual quasiparticle basis, and upon ignoring higher order
(triplet) averages, the above equations for z, ρ and κ sim-
plify to (dzn/dt) = −iω̃nzn, (dρji/dt) = −i (ω̃j − ω̃i) ρji
and (dκjk/dt) = −i (ω̃j + ω̃k)κjk where the ω̃i now cor-
respond to the renormalized eigenenergies in the above
chosen basis. Hence (assuming as usual that initial in-
terparticle correlations can be ignored), the quantities z,
ρ and κ lead to no intermediate collisional evolution (to
lowest order), which shows clearly that all terms of sec-
ond or higher order in (z∗z) or (zz) indeed vanish when
dealing with single-particle eigenenergies dressed by the
HFB mean fields; in the latter case our theory coincides
with that of Walser et al. (who actually formulated their
theory in terms of unspecified number-conserving renor-
malized potentials as can be seen from equations (64–67)
of [5]).

Furthermore, this treatment brings out the implicit ba-
sis dependence of the second order collisional integrals of
Walser et al. In their treatment, they assume that the
evolution of the system can be well parameterized by a re-
stricted set of slowly-varying “master” variables. As such,
the possibility of evolution of such variables is absent from
their theory, and hence they obtain a basis-independent
formulation. Our treatment, however, indicates that their
choice of a renormalized single-particle basis is implicit
in their particular choice of the slowly-varying quanti-
ties. In a single-particle basis where the eigenenergies are
dressed by HFB mean fields z, ρ and κ, the collisional in-
tegrals cannot include contributions due to the variations
of these HFB parameters which are assumed to be static
and hence our treatment identically coincides with that of
Walser et al., defining at the same time the eigenenergies
ω̃i as being dressed by HFB self-consistent potentials (see
also [39]). This should be contrasted to the dressing caused
simply by number-conserving HF mean fields which is im-
plicit in equation (50) of their treatment. However, if one
works within a bare basis, there is no a priori reason to
assume that any quantity is slowly varying with respect to



N.P. Proukakis and P. Lambropoulos: Basis-dependent BEC dynamics: Analogies with laser theory 365

the others, and this leads to the additional second order
contributions we have obtained in this paper (while simul-
taneously restricting the eigenstates of Eq. (10) to those
of the harmonic trap). Hence, we believe our analysis fur-
ther confirms the statement made in the last sentence of
their paper, that their results should be valid when the
mean-field induced energy shifts may be neglected during
a strong collisional event, and we thus interpret the ba-
sis correction terms of our treatment as the evolution of
these shifts in a bare basis. Our treatment can be readily
generalized to all basis-dependent shifts, by respectively
defining other dressed bases as follows: (i) the T = 0
Gross-Pitaevskii basis in which only the condensate pa-
rameters z evolve slowly and (ii) the Hartree-Fock basis
in which both z and ρ are taken as slowly-varying, whereas
the anomalous average κ is adiabatically eliminated (even
over low-lying1 modes). Finally, in the case of an HFB
formulation, such extra terms will only arise from triplet
and higher-order averages ignored in equations (48–50)
and will clearly be of higher (than second) order in the
interatomic potential, as also implied by Walser et al. [5].

5 Conclusions

In this paper we have discussed the dynamics of the
lowest-lying single-particle bare trap levels in the weak
coupling limit, under the assumption that more than one
level exhibit condensation. By comparing our equations to
those of the two-mode photon laser, we briefly commented
on the similarities and differences of such equations. We
note that the usual discussion of two-mode condensation
focuses on condensates which are either in different spin
states, or under physical separation. Describing each of
the two separate condensates by a nonlinear Schrödinger
equation (as discussed in Sect. 4), one indeed recovers a
direct analogy to the semi-classical theory of two-mode
photon lasers (by associating the fields |Φi(r, t)|2 to the
laser intensity). However, since the multi-mode nature of
the photon laser refers to different modes of the electro-
magnetic field, we believe that a more direct analogy can
be obtained at a more fundamental level, namely within a
single trapped condensate (see also [2]). In particular, in
the case of photon lasers, the number of modes and the
precise equations governing them depend on the atomic
species, the cavity, the intensity and the truncation of the
polarization expansion imposed. In the end, the modes
into which the field will oscillate result from the strong
coupling of the active medium to the cavity, correspond-
ing thus, in some sense, to a dressed basis. In the case of a
trapped Bose-Einstein condensate, the number of modes
spanned by the condensate is determined by its size, its
diluteness (i.e. whether the discussion can be essentially
limited to two-body interactions at the particular temper-
atures and densities), the strength of the interactions and

1 We remind the reader that the corresponding values of all
quantities over high-lying modes have already been implicitly
adiabatically eliminated, in favour of the effective two-body
interaction T over low-lying modes used throughout this work.

the trap confinement power, whereas the form of the equa-
tions additionally depends on the basis in which we choose
to describe the system. In this case, the maximum factor
|zi|2m|zj |2n which can be obtained in the equations is set
by the complexity of the many-body interactions (i.e. two-
body, three-body, etc.), whereas the factor we actually find
in our final equations depends on the basis in which the
equations are explicitly formulated. Following our renor-
malization discussion of Section 4.2.1, we stress that in
the case of binary interactions, exact analogy with the
semi-classical two-mode photon laser theory is obtained
only within a T = 0 Gross-Pitaevskii basis, i.e. a basis
dressed only by the condensate mean field potentials via
H ′0 =

∑
rnΞ

Bare
rn 〈â†rân〉+ (1/2)

∑
rsmn Trsmnz

∗
rz
∗
szmzn, in

analogy to the above-mentioned behavior of the photon
laser.

Changing our description slightly to explicitly in-
clude the mean-field effects on eigenenergies of our single-
particle system, we demonstrated that our treatment is
consistent with the usual description in which condensed
atoms are described in terms of the NLSE, and the evo-
lution of non-condensed atoms is based on the quan-
tum Boltzmann equation [5,7,13]. In this case, the single-
particle eigenenergies are ultimately effectively dressed by
mean fields in the many-body T -matrix approximation,
just as was found in the approach of Stoof [2] (with the
many-body corrections arising from suitable inclusion of
the anomalous average [4,21,25,27]). Our approach has
been compared in more detail to the treatment of Walser
et al. [5], which has been recently shown [40] to be equiv-
alent to the Kadanoff-Baym Green’s function formalism
as applied to trapped Bose gases by Imamovic-Tomasovic
and Griffin [8]. In particular, we have discussed how ad-
ditional contributions which arise in our second order col-
lisional integrals upon choosing a simpler (than HFB)
unperturbed basis, depend on the choice of this (bare
or partially dressed) basis. This suggests an implicit as-
sumption by Walser et al. that their eigenenergies are
dressed by mean fields in the Hartree-Fock-Bogoliubov
approximation, which we believe is equivalent to their
choice of slowly-evolving master variables. Our method
thus yields an alternative microscopic derivation of the
theory of Walser et al., based on a coupled equations of
motion formalism.

When applying perturbation theory only to second or-
der in the potential, one has to justify why such a trun-
cation is physically realistic. This perturbation theory is
essentially a systematic expansion in terms of the dilute-
ness parameter

√
na3. At T = 0 such a treatment can be

justified in the limit
√
na3 � 1 [41]. For a large system

leading to large mean fields which heavily dress the single-
particle eigenenergies from their bare trap values, one con-
ventionally shifts to a description in terms of quasipar-
ticles, thus employing HFB-shifted eigenenergies. In this
case, the validity criterion of perturbation theory at finite
temperature essentially becomes (kT/nU0)(

√
na3) � 1

for the homogeneous system [21,42,43], a criterion closely
related to the one for the absence of critical fluctuations
occurring sufficiently close to the transition point [44].
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On the other hand, the main part of this paper has been
based on a treatment in terms of bare trap eigenenergies,
since this enables a simple and direct analogy with the
semi-classical equations for multi-mode photon laser the-
ory. Clearly such a treatment cannot be valid for large,
dense condensates, and its validity will be restricted to
systems in which the interactions and particle numbers are
so small, that the trap eigenenergies become only slightly
perturbed by the mean fields. A minimum (but not neces-
sarily sufficient) criterion here is that the condensates are
very weakly-interacting in the sense that nU0 � ~ω. By
identifying the additional basis-dependent corrections of
our treatment to the second order collisional integrals of
Walser et al., we can restate this condition as the require-
ment that the additional terms are much smaller than the
first order contributions. Since the additional terms can
be visualized as rates of change of the parameters z, ρ
and κ, this criterion essentially reduces to the slow evo-
lution of such quantities. Hence, our bare basis analysis
can only be useful in the limit when all mean field po-
tentials evolve very slowly, and do not heavily modify the
bare trap eigenenergies. However, our explicit expressions
additionally include such slow evolution from a bare basis
description, as opposed to existing theories in which such
evolution is absent, applicable in the domain where the
mean field energy shifts induced (on the already renormal-
ized eigenenergies) during a collision can be neglected. In-
deed, by re-formulating our treatment explicitly in terms
of HFB eigenenergies, we find contributions of this type
arising only in higher orders in the potential, being gen-
erated by the careful consideration of triplet and higher
order averages, an issue which will be explicitly addressed
elsewhere.

NPP acknowledges discussions with R. Walser and J. Williams.
One of us (NPP) was partially supported by the ULF (Con-
tract No. ERB-FMGECT 950021) and by a grant of the Max-
Planck-Institute for Quantum Optics, Garching, where part of
this formalism was originally developed.

Appendix A: Off-diagonal contributions

For completeness, we give here all off-diagonal contribu-
tions to the condensate/non-condensate populations of the
three-level system discussed in the text. In particular, we
have for the total population evolution

R̃T|0211|2
=

4Γ0211


(N1 −N2)ρ01ρ10 + (N1 −N0)ρ12ρ21

+(NT
1 −N2)(ζ01ρ10 + ρ01ζ10)

+(NT
1 −N0)(ζ12ρ21 + ρ12ζ21)


− 2Γ0211(1 + 2N1) [ρ02ρ20 + ζ02ρ20 + ρ02ζ20]

− 8Γ0211 {ρ01ρ12ρ20 + ζ01ρ12ρ20 + ρ01ζ12ρ20 + ρ01ρ12ζ20}
(A.1)

Q̃0211
ijji =

−ν(2)
01


ρ10

[
4N0ρ12 + 4NT

0 ζ12

+2 (ρ10ρ02 + ζ10ρ02 + ρ10ζ02)

]

+ζ10

[
4NT

0 ρ12 + 2NT
0 ζ12

+ (2ρ10ρ02 + ζ10ρ02 + 2ρ10ζ02)

]


−ν(0)
21


ρ12

[
4N2ρ10 + 4NT

2 ζ10

+2 (ρ12ρ20 + ζ12ρ20 + ρ12ζ20)

]

+ζ12

[
4NT

2 ρ10 + 2NT
2 ζ10

+ (2ρ12ρ20 + ζ12ρ20 + 2ρ12ζ20)

]


+6ϑ(2)
01

[
2N1ρ10ρ12 + 2NT

1 (ζ10ρ12 + ρ10ζ12)

+NTT
1 ζ10ζ12

]

+ε(2)
01 [2ρ10ρ12 + 2 (ζ10ρ12 + ρ10ζ12) + ζ10ζ12] . (A.2)

Although R̃T|0211|2
vanishes in the limit of diagonal ρ, the

same does not apply to Q̃0211
ijji which contains a contribu-

tion ∼ ζ10ζ12, which will only vanish upon assuming that
one of the three levels (e.g. level 2) is fully uncondensed.

In the above expressions, in addition to the total pop-
ulation Ni = ni + |zi|2, we have defined the “population
terms” NT

i = (2ni + |zi|2)/2 and NTT
i = (3ni + |zi|2)/3.

The population NT
i appears familiar from laser physics, as

it contains the thermal (chaotic) contribution with a pre-
factor of 2 over the corresponding condensed (ordered)
term. Such a term will replace the full population term
Ni whenever the “population” i is multiplied by a con-
densate amplitude zi. By analogy, Ni → NTT

i whenever
the population term appears multiplied by two condensate
mean amplitudes zizi (i.e. condensate anomalous averages
of the form zz, or z∗z∗, but not normal averages z∗z).

In order to keep the notation general, so that it can be
easily applicable to n partially condensed levels with next
neighbour interactions, we have also defined the following
rates

ν
(i±1)
(i∓1)i = I0[4V(i∓1)ii(i∓1) − 2V(i∓1)(i±1)(i±1)(i∓1)

−V(i∓1)(i∓1)(i∓1)(i∓1)]V(i∓1)(i±1)ii (A.3)

ϑ
(i±1)
(i∓1)i = I0

[
V(i∓1)ii(i∓1) + Vi(i±1)(i±1)i − Viiii

]
×V(i∓1)(i±1)ii (A.4)

ε
(i±1)
(i∓1)i = I0

[
2V(i∓1)(i±1)(i±1)(i∓1) − Viiii

]
×V(i∓1)(i±1)ii (A.5)

λkllkijji = VijjiVkllk lim
η→0+

∫ ∞
0

dτe−ητ (A.6)

γ0211
ijji = I0 (VijjiV0211) (A.7)
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where

I0 =
(

1
2

)
lim
η→0+

∫ ∞
0

dτe±i(ω0+ω2−2ω1±iη)τ

+
(

1
2

)
lim
η→0+

∫ ∞
0

dτe−ητ . (A.8)

For the condensed components of the two lowest states,
we obtain the following off-diagonal contributions

X̃00(V 2) =

−4|z0|2
{

2λ0110
0000ρ01ρ10 +

(
Γ0211 + 2λ0220

0110

)
ρ12ρ21

+2λ0220
0000ρ02ρ20 + 2

(
2γ0211

0110 − γ0211
0220

)
ρ10ρ12

}

+4|z1|2
[
λ0110ρ01ρ10 + Γ0211ρ12ρ21 + 2γ0211

0110ρ10ρ12

]

+ζ10



−2|z0|2
[

4λ0110
0000ρ01

+
(
4γ0211

0110 − 2γ0211
0220 − γ0211

0000

)
ρ12

]

+2|z1|2
[
Γ0211ρ01

+
(
γ0211

0110 + 3γ0211
1221 − 3γ0211

1111

)
ρ12

]
−2
[
2λ0110ρ01 +

(
2γ0211

0220 + γ0211
1111

)
ρ12

]
+4ρ01 [Γ0211(n1 − n2)− 2λ0110n1]

−4ρ12

[
−γ0211

0000n0 +
(
4γ0211

1221 − γ0211
2222

)
n2

]
+
(
γ0211

0110 + 3γ0211
1111 − 3γ0211

1221

)
n1

−4
[(
λ0211 + 2λ0220

0110

)
ρ02ρ21 + γ0211

0000ρ10ρ02

]
−2γ0211

0000ζ10ρ02



(A.9)

X̃11(V 2) =

−4|z1|2



(
Γ0211 + 2λ0110

1111

)
ρ01ρ10

+
(
Γ0211 + 2λ1221

1111

)
ρ12ρ21

+
(
−Γ0211 + 2λ1221

0110

)
ρ02ρ20

+2
(
2γ0211

0110 + 2γ0211
1221 − γ0211

1111

)
ρ10ρ12


+4|z0|2

[
λ0110ρ01ρ10 + Γ0211ρ12ρ21 + 2γ0211

0110ρ10ρ12

]

+ζ10



−2|z1|2
[(

3Γ0211 + 4λ0110
1111

)
ρ01

+
(
5γ0211

0110 + 5γ0211
1221 − 3γ0211

1111

)
ρ12

]
+2|z0|2

[(
4γ0211

0110 − 2γ0211
0220 − γ0211

0000

)
ρ12

]
−2
[
2λ0110ρ01 +

(
2γ0211

0220 + γ0211
1111

)
ρ12

]
+4ρ01 [−Γ0211(n1 − n2)− 2λ0110n0]

−4ρ12


(
γ0211

0000 + 2γ0211
0220 − 2γ0211

0110

)
n0

+
(
γ0211

0110 + γ0211
1221 − γ0211

1111

)
n1

+
(
γ0211

2222 + 2γ0211
0220 − 2γ0211

1221

)
n2


−4

[(
−Γ0211 + 2λ1221

0110

)
ρ02ρ21

+
(
γ0211

0000 + 2γ0211
0220

)
ρ10ρ02

]
−2
(
γ0211

0000 + 2γ0211
0220

)
ζ10ρ02



·

(A.10)

Although it is extremely hard to discuss the physical im-
plication of each separate contribution appearing in the
above equations, at this point we would like to comment
briefly on a carefully selected subset of the above equa-
tions, namely

d|z0|2
dt

=

8|z1|2
{
λ0110ρ01ρ10 + Γ0211ρ12ρ21 + 2γ0211

0110ρ10ρ12

}
(A.11)

d|z1|2
dt

=

8|z0|2
{
λ0110ρ01ρ10 + Γ0211ρ12ρ21 + 2γ0211

0110ρ10ρ12

}
·

(A.12)

Such terms indicate clearly a mechanism of “coherent pop-
ulation transfer”, that is growth of condensation in one
(bare) level due to the existence of condensation in an-
other (bare) level, which occurs via off-diagonal incoher-
ent couplings ρij . By further ignoring, for simplicity, the
redistributional processes (V0211 → 0) we see a sort of
Rabi-like oscillation between the two condensates, via the
process

d|zi|2
dt

∼ |Vijji|2 [ρijρji] |zj |2. (A.13)

Such processes do not lead to changes in the total trap
level populations. On the contrary, due to the co-existence
of coherent and incoherent atoms within the same trap
level, this term can be interpreted as follows: if one level
initially contains a non-vanishing coherent amplitude, this
will be gradually transferred to the other level (even if the
other level is initially fully incoherent) without an asso-
ciated change in the total population of each level (since
the incoherent population ni of each level adjusts accord-
ingly to keep Ni fixed). Hence, even if we assume that
the condensate initially resides only on the bottom trap
level, the above contribution generated by nonlinear cou-
pling interactions will tend to give rise to a coherent mean
field amplitude in level 1 (and vice versa). Whether this
term actually becomes important at all (and in what lim-
its this may be so) depends on how heavily this contri-
bution is overshadowed by all other existing terms in the
equations of motion for coherent evolution. Although we
would not expect this term to play a significant role in the
full population dynamics, this is something which should
be confirmed by direct numerical simulation of the full
equations given in this paper. We conclude the discussion
by noting that such processes may become important in
the case of coupled 2-species condensation [16,45], or in
the creation of non-ground state trapped condensates [46],
whereby the population between such levels is controlled
by the application of external fields.
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The off-diagonal contributions to the uncondensed dy-
namics of the two lowest levels are given by

Y00(V 2) =

−2Γ0211


ρ02ρ20

+2

[
ρ12ρ21n0 + ρ01ρ10n2

− (ρ01ρ10 + ρ12ρ21 − ρ02ρ20)n1

]
−2
[
4Γ0211ρ02ρ21ρ10 + ν

(2)
01 ρ

2
10ρ02 + ν

(0)
21 ρ

2
12ρ20

]
+8|z0|2

[
λ0110

0000ρ01ρ10 + λ0220
0110ρ12ρ21 + λ0220

0000ρ02ρ20

]
+4|z1|2 [(Γ0211 − λ0110) ρ01ρ10 − Γ0211ρ02ρ20]

+ρ10ρ12


2
(
γ0211

0220 − γ0211
1111

)
+ 4|z0|2γ0211

0000

−4
[
ν

(2)
01 n0 − 3ϑ(2)

01 n1 + ν
(0)
21 n2

]
+4|z1|2

(
γ0211

0110 + 3γ0211
1221 − 3γ0211

1111

)


+ζ10



8λ0110
0000|z0|2ρ01

+2|z1|2
[
Γ0211ρ01 + 2γ0211

0110ρ12

]
+4λ0110ρ01 + 8γ0211

0220ρ12

+4ρ01 [(2λ0110 + Γ0211)n1 − Γ0211n2]

+4ρ12

[
2
(
γ0211

0220 − 2γ0211
0110

)
n0

+4γ0211
0110n1 + 2γ0211

0220n2

]
+4ρ02ρ21

(
2λ0220

0110 − Γ0211

)
+8ρ10ρ02

(
γ0211

0000 − 2γ0211
0110 + γ0211

0220

)
+ζ10ρ02

(
3γ0211

0000 − 4γ0211
0110 + 2γ0211

0220

)



(A.14)

and

Y11(V 2) =

4Γ0211

{
ρ02ρ20 + 2 [ρ12ρ21n0 + ρ01ρ10n2]

−2 (ρ01ρ10 + ρ12ρ21 − ρ02ρ20)n1

}
+4
[
4Γ0211ρ02ρ21ρ10 + ν

(2)
01 ρ

2
10ρ02 + ν

(0)
21 ρ

2
12ρ20

]
+4|z0|2 [−λ0110ρ01ρ10 + Γ0211ρ12ρ21]

+4|z1|2


(
2λ1111

0110 − Γ0211

)
ρ01ρ10

+
(
2λ1221

1111 − Γ0211

)
ρ12ρ21

+
(
2λ1221

0110 + Γ0211

)
ρ02ρ20



+ρ10ρ12



−4
(
2γ0211

0220 − γ0211
1111

)
+8
[
ν

(2)
01 n0 − 3ϑ(2)

01 n1 + ν
(0)
21 n2

]
+8|z0|2

(
3γ0211

0110 − 2γ0211
0220 − γ0211

0000

)
+8|z1|2

(
2γ0211

1111 − γ0211
0110 − γ0211

1221

)



+ζ10



2ν(2)
01 |z0|2ρ12

+2|z1|2
[(

4λ1111
0110 − Γ0211

)
ρ01

+
(
3γ0211

1111 − γ0211
0000 − γ0211

1221

)
ρ12

]
+4λ0110ρ01 + 2

(
3γ0211

1111 − 2γ0211
0220

)
ρ12

+4ρ01 [2λ0110n0 − 3Γ0211n1 + 3Γ0211n2]

+4ρ12


(
6γ0211

0110 − 2γ0211
0220 − γ0211

0000

)
n0

+
(
6γ0211

1221 − 2γ0211
0220 − γ0211

2222

)
n2

−5ϑ(2)
01 n1


+4ρ02ρ21

(
2λ1221

0110 + 3Γ0211

)
+4ρ10ρ02

(
8γ0211

0110 − 2γ0211
0220 − γ0211

0000

)
+8ζ10ρ02γ

0211
0110



·

(A.15)

Appendix B: Derivation of condensate
evolution

The second order contribution to |zi|2 of equation (17)
can be found by adiabatically eliminating the quantity
z∗i 〈â†sâmâr〉 via

i
dzi
dt

= ωizi +
′∑
pql

Tipql
〈
â†pâqâl

〉
(B.1)

and

i
d
dt

〈
â†sâmâr

〉
= (ωm + ωr − ωs)

〈
â†sâmâr

〉
+ f〈â†ââ〉

(B.2)

with

f〈â†ââ〉 =
∑
lt

Tmrlt
〈
â†sâlât

〉
+
∑
plt

Tprlt
〈
â†pâ
†
sâmâlât

〉

+
∑
plt

Tpmlt
〈
â†pâ
†
sârâlât

〉
−
∑
pql

Tpqls
〈
â†pâ
†
qâlâmâr

〉
·

(B.3)

Hence, the quantity F〈â†ââ〉 corresponding to F of equa-
tion (5), now becomes

F〈â†ââ〉 = z∗i f〈â†ââ〉 −
∑
pql

Tpqli
〈
â†pâ
†
qâl
〉〈
â†sâmâr

〉
·

(B.4)
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Appendix C: Second order collisional integrals

For completeness, we give here the second order collisional integrals of Walser et al. [5] as generated by our approach

�
dρ

dt

�Walser

= 2
X
rsmn

X
pqlt

TrsmnT
(δ)
pqlt

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

[(ρmp + δmp) (ρnq + δnq) ρtsρlr − ρmpρnq (ρts + δts) (ρlr + δlr)]

+2
�
(ρmp + δmp)

�
z∗qzn

�
ρtsρlr − ρmp

�
z∗qzn

�
(ρts + δts) (ρlr + δlr)

�
+ [(ρmp + δmp) (ρnq + δnq) (z∗szt) ρlr − ρmpρrq (z∗szt) (ρlr + δlr)]

+2
�
(ρmp + δmp)κntκ

∗
qsρlr − ρmpκntκ∗qs (ρlr + δlr)

�
+2
�
(ρmp + δmp)κntκ

∗
qs (z∗rzl)− ρmpκntκ∗qs (z∗rzl)

�
+2
��
z∗pzm

�
κntκ

∗
qsρlr −

�
z∗pzm

�
κrtκ

∗
qs (ρlr + δlr)

�
+2
�
(ρmp + δmp) (znzt)κ

∗
qsρlr − ρmp (znzt)κ

∗
qs (ρlr + δlr)

�
+4
�
(ρmp + δmp)κnt

�
z∗qz
∗
s

�
ρlr − ρmpκnt

�
z∗qz
∗
s

�
(ρlr + δlr)

�

+2κ∗qi

2
666664

[(ρmp + δmp)κrlρts − ρmpκrl (ρts + δts)]

+
��
z∗pzm

�
κrlρts −

�
z∗pzm

�
κrl (ρts + δts)

�
+ [(ρmp + δmp)κrl (z∗szt)− ρmpκrl (z∗szt)]

+ [(ρmp + δmp) (zrzl) ρts − ρmp (zrzl) (ρts + δts)]

3
777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

· (C.1)

As explained in the text

T
(δ)
pqlt =

∫
dt′e−i(ωl+ωt−ωp−ωq)(t−t′)

= πδ(∆ω) − iP
(

1
∆ω

)
· (C.2)

Here ∆ω = (ωl + ωt − ωp − ωq) and the ωi denotes the
eigenenergy of level i in the particular basis chosen for the
analysis of the system. In our original formulation, these
correspond to bare trap eigenenergies, whereas in order
to establish exact analogy with the collisional integrals of
Walser et al. [5], these should be replaced by their corre-
sponding values dressed by normal and anomalous HFB
mean fields.

In the original formulation of Walser et al., their basis
is left unspecified, and their resulting expressions are as-
sumed to be valid for any single-particle basis dressed by,
at most, number-conserving mean fields (i.e. no anomalous
averages), a conclusion not supported by our analysis.
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